Примеры решения задач по математике Информатика Электротехника Энергетика Решение задач по ядерной физике Курс лекций и задач по физике Cопротивление материалов

Математика контрольная примеры решения задач

При изучении этой темы вы познакомитесь с понятием сложной функции нескольких переменных, правилами дифференцирования сложной функции и свойством инвариантности 1-го дифференциала, а также с понятиями касательной плоскости и нормали к поверхности, условиями их существования и уравнениями.

Функция нескольких переменных

Пусть имеется n+1 переменная x1, x2, ..., xn, y, которые связаны между собой так, что каждому набору числовых значений переменных x1, x2, ..., xn соответствует единственное значение переменной y. Тогда говорят, что задана функция f от n переменных. Число y, поставленное в соответствие набору x1, x2, ..., xn называется значением функции f в точке (x1, x2, ..., xn), что записывается в виде формулы y=f(x1,x2,..., xn) или y=y(x1,x2,..., xn).

Переменные x1, x2, ..., xn являются аргументами этой функции, а переменная y‑ функцией от n переменных.

Далее будем говорить лишь о функции двух переменных. Для функций большего числа переменных все факты, о которых будет идти речь, или аналогичны или сохраняются без всякого изменения. Аргументы функции двух переменных будем обозначать как правило x и y, а значение функции  z.

Будем говорить, что задана функция двух переменных, если любой паре чисел (x,y) из некоторого множества D упорядоченных пар чисел поставлено в соответствие единственное число, которое обозначается f(x,y) и называется значением функции f в точке (x,y).

Множество D называется областью определения функции.

Поскольку любую пару чисел x,y можно рассматривать как пару координат точки M на плоскости, вместо z=f(x,y) можно писать z=f(M).При этом аргументами функции будут координаты x,y точки M.

Числа x,y можно рассматривать как координаты вектора , исходящего из начала координат и с концом в точке M(x,y). Тогда функция двух переменных будет функцией вектора, что записывается в виде формулы z=f(), причем аргументами функции являются координаты вектора.

График функции двух переменных есть множество точек (x,y,f(x,y)), где (x,y)ÎD. График представляет собой некоторую поверхность. Пример такой поверхности приводится на рисунке 1.

Очевидно, что нельзя ввести понятия возрастания или убывания (монотонности) функции двух переменных. Рассмотрим график некоторой функции z=f(x,y), изображенный на рисун-ке 2. Из точки M(x,y) в плоскости X,Y проведем два луча l1 и l2 , определяющих некоторые направления. Можно говорить, что в точке M функция f в направлении l1 возрастает, а в направлении l2 убывает. Это означает, что для любой точки M1 , лежащей на луче l1 достаточно близко к точке M, выполняется неравенство f(M1)>f(M). Для любой точки M2 , лежащей на луче l2 достаточно близко к точке M, выполняется неравенство f(M2)<f(M).

Одним из подходов к исследованию функций двух переменных является изучение поведения функции в точке, то есть определение направлений, в которых функция убывает или возрастает, и определение скорости возрастания или убывания.

Частные производные Частной производной по x функции z=f(x,y) в точке M0(x0,y0) называется предел

 , если этот предел существует.

Приведем примеры вычисления частных производных. Как говорилось выше, для вычисления частной производной по x функции z=f(x,y) нужно положить переменную y равной константе, а при нахождении частной производной по y нужно считать константой переменную x.

Дифференциал функции двух переменных

Производная по направлению. Пусть в плоскости XOY расположена точка M0(x0,y0). Зададим произвольный угол a и рассмотрим множество точек на той же плоскости, координаты которых определяются из формул x=x0+tcosa, y=y0+tsina.

Представление вектора в виде пары его координат будем записывать в виде   или . Такое представление имеет одну характерную особенность: оно не определяет местоположение вектора на плоскости XOY. Чтобы его определить, нужно наряду с координатами вектора задавать, например, координаты его начальной точки или, как её можно назвать, точки приложения вектора. Функция f определяет для каждой точки области G вектор-градиент, исходящий из этой точки.

Экстремум функции двух переменных. Точка M0(x0,y0) является точкой максимума (минимума) функции z=f(x,y), если найдется такая окрестность точки M0, что для всех точек M(x,y) из этой окрестности выполняется неравенство f(x,y)<f(x0,y0) (f(x,y)> f(x0,y0)). Точки максимума и минимума называются точками экстремума.

Метод наименьших квадратов Пусть проводится n однородных испытаний или экспериментов, и результатом каждого испытания является пара чисел – значений некоторых переменных x и y. Испытание с номером i приводит к числам xi,yi. В качестве испытания можно, например, рассматривать выбор определенного предприятия в данной отрасли промышленности, величиной x считать объем производства продукции (например в миллионах рублей), величиной y – объем экспорта этого вида продукции (в миллионах рублей), и обследовать n предприятий отрасли. Признаком наилучшей прямой считается минимум суммы квадратов отклонений фактических значений y, полученных из таблицы, от вычисленных по формуле

Процедуру решения дифференциального уравнения часто называют интегрированием уравнения, при этом интегрировать приходится в общем случае ровно n раз, и при каждом интегрировании в решение входит очередная произвольная постоянная.
Математика примеры решения задач