Дифференциальные уравнения Типовые задачи Вычислить интеграл Вычисление объема тела Вычисление криволинейных интегралов Длина дуги в декартовых координатах Вычислить повторный интеграл


Вычисление интеграла ФНП.

ПРИМЕР 8. Вычислить объем тела, ограниченного эллипсоидом .

Решение. Проекция поверхности эллипсоида на ось  есть отрезок . Для всякого  сечение есть эллипс, приведенное уравнение которого имеет вид .

По формуле площади фигуры, ограниченной эллипсом (см. пример 6), имеем

, . Поэтому значение объема тела, ограниченного эллипсоидом с полуосями ,
вычисляется по формуле объема тела с известной площадью "поперечного" сечения:

.

Вычисление криволинейного интеграла I рода
(по длине дуги)   проводим с предварительным заданием дуги  в ПАРАМЕТРИЧЕСКОЙ ФОРМЕ

   (см. п. 2.5)

и записью дифференциального элемента длины дуги в виде

.

Правило: криволинейный интеграл  сводится к определенному интегралу с использованием уравнений дуги.

Формула для приращения функции, имеющей производную. Непрерывность функции, имеющей производную. Пусть x - точка, в которой функция у= f(x) имеет производную у'(x), Dх и Dу - приращение аргумента и соответствующее приращение функции. Докажем Если функция имеет производную в точке х, то её приращение в этой точке можно представить в виде Dу= у'(x) Dх + a(Dх) Dх, где a(Dх) - бесконечно малая функция при Dх ®0.
Интегрирование функций нескольких переменных