Дифференциальные уравнения Типовые задачи Вычислить интеграл Вычисление объема тела Вычисление криволинейных интегралов Длина дуги в декартовых координатах Вычислить повторный интеграл


Вычисление интеграла ФНП.

Типовые задачи

Вычисление объема тела

Пусть в пространстве задано тело, проекцией которого на ось  является отрезок  и при любом , , известно значение площади "поперечного" сечения тела плоскостью  . Тогда объем этого тела можно получить, переходя от интегральной суммы  к
интегралу .

Здесь , ,  – разбиение  отрезка  на частичные отрезки  с длинами , ,  – произвольно выбираемые точки на

Представим на рисунке область  и выберем способ счета.
Поскольку переход к явному заданию границы фигуры затруднен,
а кроме того, есть комбинация переменных , то разумно
перейти к полярным координатам  Получим  или  – уравнение лемнискаты (см. в 7.7.1 пример 7). Используя симметрию фигуры, вычисляем площадь .

ПРИМЕР 5. Вычислить площадь фигуры , ограниченной кривыми , , ,  при .

Решение.

.

Геометрический смысл производной.

Уравнения касательной и нормали к графику гладкой функции.

 Геометрический смысл производной у'(x0), как следует из вышеизложенного, - угловой коэффициент касательной к графику функции y=f(x) в точке (x0,y0=f(x0)). Не любая функция имеет касательную в каждой точке, так, невозможно построить касательную к графику функции |x| в точке (0,0). Чтобы в точке (x0,y0=f(x0)) существовала касательная, необходимо существование предела , т.е. существование производной. Функции, имеющие производную в каждой точке своей области определения


Интегрирование функций нескольких переменных