Дифференциальные уравнения Типовые задачи Вычислить интеграл Вычисление объема тела Вычисление криволинейных интегралов Длина дуги в декартовых координатах Вычислить повторный интеграл


Вычисление интеграла ФНП.

Вычисление интеграла  рассмотрим подробно в зависимости от  и .

Вычисление определенного интеграла основано на следующих утверждениях, имеющих и самостоятельное значение.

Пусть функция  задана на , . Тогда интеграл  можно назвать "определенным интегралом с переменным верхним пределом", ,  – переменная интегрирования;
он является некоторой функцией верхнего предела, .

Теорема (о дифференцируемости  на )

Если   непрерывна на , то  дифференцируема на , причем  .

Доказательство. Пусть , : . Тогда

, здесь применено свойство о среднем значении непрерывной на  функции ,  – точка, расположенная между  и .

Далее рассмотрим отношение  при , получаем

.

Поскольку  – произвольная точка отрезка , то  
существует для каждого   из , т.е.  – дифференцируемая на  и

.

Замечания.  1. Из представления  следует
непрерывность   в точке  и в силу произвольности точки   – непрерывность  на .

Можно показать [1], что для непрерывности функции  достаточно потребовать интегрируемость (по Риману) подынтегральной функции  на .

Геометрический смысл производной.

Уравнения касательной и нормали к графику гладкой функции.

 Геометрический смысл производной у'(x0), как следует из вышеизложенного, - угловой коэффициент касательной к графику функции y=f(x) в точке (x0,y0=f(x0)). Не любая функция имеет касательную в каждой точке, так, невозможно построить касательную к графику функции |x| в точке (0,0). Чтобы в точке (x0,y0=f(x0)) существовала касательная, необходимо существование предела , т.е. существование производной. Функции, имеющие производную в каждой точке своей области определения


Интегрирование функций нескольких переменных