Дифференциальные уравнения Типовые задачи Вычислить интеграл Вычисление объема тела Вычисление криволинейных интегралов Длина дуги в декартовых координатах Вычислить повторный интеграл


Интегрирование функций нескольких переменных

ФНП   рассматривается на некотором множестве , , . Пусть  – ограниченное, связное и замкнутое множество точек из ; впредь для краткости такое множество  будем называть фигурой . Интеграл ФНП по фигуре  строится в зависимости от количества независимых переменных ФНП и структуры (вида) фигуры . Так, например, в школьном курсе математики содержится первоначальное понятие определенного интеграла  функции , , . Здесь функция имеет одну независимую переменную, фигура  – отрезок.

Для функции двух переменных , очевидно, интеграл можно строить на дуге  или на плоской области , , . Функция трех переменных может рассматриваться на дуге ,
на части криволинейной (может быть и прямолинейной) поверхности , на "теле" , здесь , ,  – подмножества  и т.д.

Перечисленные множества (фигуры) различаются размерностью. Под словами размерность фигуры понимаем количество координат (чисел), необходимых для задания точки на фигуре.
Отрезок , дуга  в  или в  имеют размерность  
(одноразмерные фигуры); плоская область ,  и часть
поверхности ,  – двухразмерные фигуры; "тело"  – трехразмерная фигура.

Перечисленные множества (фигуры) различаются размерностью. Под словами размерность фигуры понимаем количество координат (чисел), необходимых для задания точки на фигуре.
Отрезок , дуга  в  или в  имеют размерность  
(одноразмерные фигуры); плоская область ,  и часть
поверхности ,  – двухразмерные фигуры; "тело"  – трехразмерная фигура.

С размерностью фигуры связано интуитивно понимаемое понятие мера фигуры (сокр. ). Теория меры множества включает понятия: "спрямляемость" дуги", "квадрируемость" области,
"кубируемость" тела, устанавливая, в частности, необходимые и
достаточные условия их существования.

Сведем в таблицу предлагаемые термины для лучшего запоминания.

,

Фигура ,

Размерность фигуры ,

Мера
фигуры ,

Отрезок

, одноразмерная

Длина

Дуга

, одно-
размерная

Длина

Плоская

область

двухразмерная

Площадь

Часть

поверхности

двухразмерная

Площадь

 Тело

трехразмерная

Объем

Определение производной.

Пусть функция y=f(x) определена в точке х и некоторой её окрестности. Придадим значению аргумента х приращение Dх (положительное или отрицательное, но не выводящее за пределы этой окрестности) и найдем соответствующее приращение функции Dу=f(x+Dх)- f(x). Передел отношения приращение функции Dу к приращению аргумента Dх при Dх ®0 называется производной функции y=f(x) в точке х.


Интегрирование функций нескольких переменных